Enter your details:
Thank you for subscribing.
Subscribe to our newsletter!

Fiorenzo Moscatelli1, Anna Valenzano1, Rita Polito1, Sessa Francesco1, Angelo Montana2, Monica Salerno2, Antonietta Messina3, Marcellino Monda3, Giuseppe Cibelli1, Vincenzo Monda1,3

1University of Foggia, Department of Clinical and Experimental Medicine, Foggia, Italy
2University of Catania, Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, Catania, Italy
3Università degli Studi della Campania Luigi Vanvitelli, Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetic and Sport Medicine, Naples, Italy

Ketogenic Diet and Sport Performance

Sport Mont 2020, 18(1), 91-94 | DOI: 10.26773/smj.200216


Many athletes are concerned about attaining or maintaining optimal body weight and composition for their sport. Athletes may want to reduce body weight to ensure optimal performance, to improve aesthetic appearance, or to compete in weight category sports. This leads to efforts to reduce body fat without losing muscle mass and often to nutritional practices that may have severe health consequences. A ketogenic diet is high in fat and low in carbohydrates (≤50 g d-1) and fairly high in protein. There are numerous randomized controlled studies showing that ketogenic diets effectively reduce body fat without causing excessive loss of lean body tissue. The crucial question is whether these diets influence sports performance and, if so, how. Many nutrition-exercise combinations have been studied in an effort to increase rates of fatty acid oxidation and attenuate the rate of carbohydrate utilization, thus potentially augmenting exercise performance. The evidence suggests that increased fat availability transfers into higher rates of both whole-body and muscle lipid utilization during standardized submaximal aerobic exercise. However, despite greater rates of fat oxidation, these diets consistently fail to improve endurance performance compared with a carbohydrate-rich diet, and little is known about the effect of a ketogenic diet on strength performance.


ketogenic diet, physical exercise, endurance exercise, central fatigue, aerobic exercise

View full article
(PDF – 95KB)


Brukner, P. (2013). Challenging beliefs in sports nutrition: Are two “core principles” proving to be myths ripe for busting? Br. J. Sports Med., 47, 663-664. https://doi.org/10.1136/bjsports-2013-092440.

Burke, L.M. (2015). Re-Examining High-Fat Diets for Sports Performance: Did We Call the ‘Nail in the Coffin’ Too Soon?. Sports Med., 45, 33–49. https://doi.org/10.1007/s40279-015-0393-9

Burke, L.M., & Maughan, R.J. (2015). The Governor has a sweet tooth – Mouth sensing of nutrients to enhance sports performance. Eur. J. Sport Sci., 15(1), 29-40. https://doi.org/10.1080/17461391.2014.971880.

Burke, L.M., Ross, M.L., Garvican-Lewis, L.A., Welvaert, M., Heikura, I.A., Forbes, S.G., Mirtschin, J.G., Cato, L.E., Strobel, N., Sharma, A.P., & Hawley, J.A. (2017). Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol., 595(9), 2785-2807. https://doi.org/10.1113/JP273230.

Chang, C.K., Borer, K., & Lin, P.J. (2017). Low-Carbohydrate-High-Fat Diet: Can it Help Exercise Performance? J. Hum. Kinet., 56, 81-92. https://doi.org/10.1515/hukin-2017-0025.

Chieffi, S., Messina, G., Villano, I., Messina, A., Valenzano, A., Moscatelli, F., Salerno, M., Sullo, A., Avola, R., Monda, V., Cibelli, G., & Monda, M. (2017) Neuroprotective Effects of Physical Activity: Evidence from Human and Animal Studies. Front. Neurol., 8,188. https://doi.org/10.3389/fneur.2017.00188

Cole, M.J., Coleman, D.A., Hopker, J.G., Wiles, J. (2014). Improved Gross Efficiency during Long Duration Submaximal Cycling Following a Short-term High Carbohydrate Diet. International journal of sports medicine, 35(3), 265-269. https://doi.org/10.1055/s-0033-1348254

Cox, P. J., Kirk, T., Ashmore, T., Willerton, K., Evans, R., Smith, A., Murray, A.J., Stubbs, B., West, J., McLure, S.W., King, M.T., Dodd, M.S., Holloway, C., Neubauer, S., Drawer, S., Veech, R.L., Griffin, J.L., & Clarke, K. (2016). Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab., 24(2), 256-68. https://doi.org/10.1016/j.cmet.2016.07.010.

Davis, J.M., & Bailey, S.P. (1997). Possible mechanisms of central nervous system fatigue during exercise. Medicine and Science in Sports and Exercise, 29(1), 45-57. https://doi.org/10.1097/00005768-199701000-00008.

Ferreira, G.A., Osiecki, R., Lima-Silva, A.E., De Angelis-Pereira, M.C., & De-Oliveira, F.R. (2014). Effect of a reduced-CHO diet on the rate of perceived exertion curve during an incremental test. Int. J. Sport Nutr. Exerc. Metab., 24(5), 532-542. https://doi.org/10.1123/ijsnem.2013-0248.

Gandevia, S.C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev., 81, 1725–89.

Gibson, A.A., Seimon, R.V., Lee, C.M.Y., Ayre, J., Franklin, J., Markovic, T.P., Caterson, I.D., & Sainsbury, A. (2015). Do ketogenic diets really suppress appetite? A systematic review and meta-analysis. Obes. Rev. https://doi.org/10.1111/obr.12230.

Greene, D.A., Varley, B.J., Hartwig, T.B., Chapman, P., & Rigney, M. (2018). A low-carbohydrate ketogenic diet reduces body mass without compromising performance in powerlifting and olympic weightlifting athletes. J. Strength Cond. Res., 32(12), 3373-3382. https://doi.org/10.1519/JSC.0000000000002904.

Harvey, K.L., Holcomb, L.E., & Kolwicz, S.C. (2019). Ketogenic Diets and Exercise Performance. Nutrients, 11, 2296. https://doi.org/10.3390/nu11102296.

Hawley, J.A., & Burke, L.M. (2010). Carbohydrate availability and training adaptation: Effects on cell metabolism. Exerc. Sport Sci. Rev., 38(4), 152-160. https://doi.org/10.1097/JES.0b013e3181f44dd9.

Jeukendrup, A.E. (2017). Periodized Nutrition for Athletes. Sport. Med., 47(Suppl. 1), 51–63. https://doi.org/10.1007/s40279-017-0694-2.

Kiens, B., & Astrup, A. (2015). Ketogenic Diets for Fat Loss and Exercise Performance: Benefits and Safety? Exerc. Sport Sci. Rev., 43(3), 109. https://doi.org/10.1249/JES.0000000000000053.

Lambert, E.V., Hawley, J.A., Goedecke, J., Noakes, T.D., & Dennis, S.C. (1997). Nutritional strategies for promoting fat utilization and delaying the onset of fatigue during prolonged exercise. J. Sports Sci., 15(3), 315-324. https://doi.org/10.1080/026404197367326.

Ma, S., Huang, Q., Tominaga, T., Liu, C., & Suzuki, K. (2018). An 8-Week Ketogenic Diet Alternated Interleukin-6, Ketolytic and Lipolytic Gene expression, and Enhanced Exercise Capacity in Mice. Nutrients., 10(11), 1696. https://doi.org/10.3390/nu10111696.

Ma, S., & Suzuki, K. (2019). Keto-Adaptation and Endurance Exercise Capacity, Fatigue Recovery, and Exercise-Induced Muscle and Organ Damage Prevention: A Narrative Review. Sports, 7(2), pii: E40. https://doi.org/10.3390/sports7020040.

McSwiney, F.T., Wardrop, B., Hyde, P.N., Lafountain, R.A., Volek, J.S., & Doyle, L. (2018). Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism, 81, 25-34. https://doi.org/10.1016/j.metabol.2017.10.010.ž

Messina, G., Zannella, C., Monda, V., Dato, A., Liccardo, De Blasio, S., Valenzano, A., Moscatelli, F., Messina, A., Cibelli, G., & Monda, M. (2015). The Beneficial Effects of Coffee in Human Nutrition. Biology and Medicine, 7(4), 1-5. https://doi.org/10.4172/0974-8369.1000.

Monda, V., Valenzano, A., Moscatelli, F., Salerno, M., Sessa, F., Triggiani, A.I., et al. (2017). Primary Motor Cortex Excitability in Karate Athletes: A Transcranial Magnetic Stimulation Study. Front. Physiol. 8, 695. https://doi.org/10.3389/fphys.2017.00695.

Moscatelli, F., Messina, G., Valenzano, A., Petito, A., Triggiani, A.I., Ciliberti, M.A.P., Monda, V., Messina, A., Tafuri, D., Capranica, L., Cibelli, G., & Monda, M (2015). Relationship between RPE and Blood Lactate after Fatiguing Handgrip Exercise in Taekwondo and Sedentary Subjects. Biol. Med., 1, S3008. https://doi.org/10.4172/0974-8369.1000s3008

Moscatelli, F., Messina, G., Valenzano, A., Monda, V., Viggiano, A., Messina, A., et al. (2016) Correction: Functional Assessment of Corticospinal System Excitability in Karate Athletes. Plos One, 11(7), e0159846. https://doi.org/10.1371/journal.pone.0159846

Murtaza, N., Burke, L., Vlahovich, N., Charlesson, B., O’ Neill, H., Ross, M., Campbell, K., et al. (2019). The Effects of Dietary Pattern during Intensified Training on Stool Microbiota of Elite Race Walkers. Nutrients, 11(2), 261. doi.org/10.3390/nu11020261

Owen, O.E., Felig, P., Morgan, A.P., Wahren, J., & Cahill, G.F. (1969). Liver and kidney metabolism during prolonged starvation. J. Clin. Invest., 48(3), 574-583. https://doi.org/10.1172/JCI106016.

Owen, O.E., Morgan, A.P., Kemp, H.G., Sullivan, J.M., Herrera, M.G., & Cahill, G.F. (1967). Brain metabolism during fasting. J. Clin. Invest., 46(10), 1589-1595. https://doi.org/10.1172/JCI105650.

Paoli, A., Bianco, A., & Grimaldi, K.A. (2015). The Ketogenic Diet and Sport: A Possible Marriage? Exerc. Sport Sci. Rev., 43(3), 153-62 https://doi.org/10.1249/JES.0000000000000050.

Paoli, A., Grimaldi, K., D’Agostino, D., Cenci, L., Moro, T., Bianco, A., et al. (2012). Ketogenic diet does not affect strength performance in elite artistic gymnasts. J. Int. Soc. Sports Nutr., 9(34). https://doi.org/10.1186/1550-2783-9-34.

Parry, H.A., Kephart, W.C., Mumford, P.W., Romero, M.A., Mobley, C.B., Zhang, Y., et al. (2018). Ketogenic diet increases mitochondria volume in the liver and skeletal muscle without altering oxidative stress markers in rats. Heliyon, 4(11), e00975. https://doi.org/10.1016/j.heliyon.2018.e00975.

Phinney, S.D., Bistrian, B.R., Evans, W.J., Gervino, E., & Blackburn, G.L. (1983). The human metabolic response to chronic ketosis without caloric restriction: Preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism, 32(8), 769-776. https://doi.org/10.1016/0026-0495(83)90106-3.

Secher, N.H., Seifert, T., & Van Lieshout, J.J. (2008). Cerebral blood flow and metabolism during exercise: Implications for fatigue. J. Appl. Physiol., 104, 306–314 https://doi.org/10.1152/japplphysiol.00853.2007.

Shimizu, K., Saito, H., Sumi, K., Sakamoto, Y., Tachi, Y., & Iida, K. (2018). Short-term and long-term ketogenic diet therapy and the addition of exercise have differential impacts on metabolic gene expression in the mouse energy-consuming organs heart and skeletal muscle. Nutr. Res., 60, 77-86. https://doi.org/10.1016/j.nutres.2018.09.004.

Viggiano, E., Monda, V., Messina, A., Moscatelli, F., Valenzano, A., Tafuri, D., et al. (2016). Cortical spreading depression produces a neuroprotective effect activating mitochondrial uncoupling protein-5. Neuropsychiatr. Dis. Treat., 12, 1705–10. https://doi.org/10.2147/NDT.S107074.

Volek, J.S., Phinney, S.D., Forsythe, C.E., Quann, E.E., Wood, R.J., Puglisi, M.J., et al. (2009). Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet. Lipids, 44(4), 297-309. https://doi.org/10.1007/s11745-008-3274-2.

Wilson, J.M., Lowery, R.P., Roberts, M.D., Sharp, M.H., Joy, J.M., Shields, K.A., et al. (2017). The Effects of Ketogenic Dieting on Body Composition, Strength, Power, and Hormonal Profiles in Resistance Training Males. J. Strength Cond. Res. https://doi.org/10.1519/jsc.0000000000001935.

Zajac, A., Poprzecki, S., Maszczyk, A., Czuba, M., Michalczyk, M., & Zydek, G. (2014). The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients, 6(7), 2493-508. https://doi.org/10.3390/nu6072493.

Zinn, C., Wood, M., Williden, M., Chatterton, S., & Maunder, E. (2017). Ketogenic diet benefits body composition and well-being but not performance in a pilot case study of New Zealand endurance athletes. J. Int. Soc. Sports Nutr., 14(22). https://doi.org/10.1186/s12970-017-0180-0.